1. General information on the course

Full course name	Numerical Methods in Economics	
Full official name of a higher education institution	Sumy State University	
Full name of a structural unit	Academic and Research Institute of Business, Economics and Management. Department of Economic Cybernetics	
Author(s)	Kashcha Mariia Oleksiivna	
Cycle/higher education level	The First Level Of Higher Education, National Qualifications Framework Of Ukraine – The 6th Level, QF-LLL – The 6th Level, FQ-EHEA – The First Cycle	
Semester	8 тижнів протягом 8-го семестру	
Workload	Обсяг навчальної дисципліни становить 5 кредитів ЄКТС, 150 годин, з яких 48 годин становить контактна робота з викладачем (16 години лекцій,32 години практичних робіт), 102 години становить самостійна робота	
Language(s)	English	

2. Place in the study programme

Relation to curriculum	Compulsory course available for study programme "Business Analytics"		
Prerequisites	Modeling the economy		
Additional requirements	There are no specific requirements		
Restrictions	There are no specific restrictions		

3. Aims of the course

Formation of basic abilities to apply economic and mathematical methods to the formation and substantiation of effective business strategies, which are now based on accurate analysis and numerical calculation; formation of a system of theoretical knowledge and practical skills of application of various mathematical and statistical models, basic methods of quantitative measurement of factors influencing economic processes.

4. Contents

Topic 1 Introduction. Data presentation

Frequency distribution. Distribution center indicators. RMS. Covariance. Effects of diversification. Choice of the weighing method.

Topic 2 Application of differential calculus

The rate of change of the indicator. Taylor's schedule. Finding the maximum and minimum values. Partial derivatives. Lagrange operator.

Topic 3 Numerical methods

The method of division in half. Newton Rafson's method. Simpson's rule. The Mon-te-Carlo method. Method of control of random variable.

Topic 4 Optimization

Optimization under constraints in the form of equations (Lagrange factors). Quadratic programming with inequalities. Kuhn-Tucker conditions. Danzig-Wolf method.

Topic 5 Analysis of the main components

Analysis of the main components. Application. Factor analysis. Arbitrage pricing theory.

5. Intended learning outcomes of the course

After successful study of the course, the student will be able to:

LO1	Know and apply numerical methods to solve economic problems.
LO2	Solve some problems and check the adequacy of their solution.
LO3	Build mathematical models related to solving applied problems
LO4	Analyze results and develop practical recommendations

6. Role of the course in the achievement of programme learning outcomes

Programme learning outcomes achieved by the course. For 051 Economics:

PO12	Carry out a comprehensive analysis of complex economic systems, compare and contrast their components, evaluate and justify evaluations of the effectiveness of their functioning.
PO13	Select and apply analytical tools to study the state and prospects of development of certain segments of international markets for goods and services using modern knowledge of methods, forms, and tools of international trade regulation.
PO14	Understand and apply theories, principles, tools, and instruments for the implementation of international monetary, financial and credit relations.
PO24	Justify the choice and apply information and analytical tools, economic and statistical methods of calculation, complex analysis techniques, and methods of monitoring world markets.

7. Teaching and learning activities

7.1 Types of training

Topic 1. Introduction. Data presentation

lect.1 "Introduction. Data presentation" (full-time course)

Frequency distribution. Distribution center indicators. RMS. Covariance. Effects of diversification. Choice of weighing method.Frequency distribution. Distribution center indicators.

lect.2 "Introduction. Data presentation" (full-time course)

RMS. Covariance. Effects of diversification. Choice of weighing method. Frequency distribution. Distribution center indicators.

lab.w.1 "Frequency distribution. Distribution center indicators." (full-time course) Presentation of data and descriptive statistics

lab.w.2 "Covariance. Effects of diversification. Choice of weighing method." (full-time course) Presentation of data and descriptive statistics. Test

Topic 2. Application of differential calculus

lect.3 "Application of differential calculus" (full-time course) The rate of change of the indicator. Taylor's schedule.

lect.4 "Application of differential calculus" (full-time course)

Finding the maximum and minimum values. Partial derivatives. Lagrange operator.

lab.w.3 "The rate of change of the indicator." (full-time course) Differential calculus

lab.w.4 "Taylor's schedule. Finding the maximum and minimum values." (full-time course) Differential calculus. Test

lab.w.5 "Partial derivatives." (full-time course) Partial derivatives.

lab.w.6 "Lagrange operator." (full-time course)

Lagrange operator.

Topic 3. Numerical methods

lect.5 "Numerical methods" (full-time course)

The method of division in half. Newton Rafson's method.

lect.6 "Numerical methods" (full-time course)

Simpson's rule. The Monte-Carlo method. Method of control of random variable.

lab.w.7 "The method of division in half." (full-time course) Numerical methods. Equation solving. The method of division in half.

lab.w.8 "Newton Rafson's method." (full-time course) Numerical methods. Equation solving. Newton Rafson's method.

lab.w.9 "Simpson's rule." (full-time course) Numerical methods. Equation solving

lab.w.10 "The Monte-Carlo method. Method of control of random variable." (full-time course) Numerical methods. Equation solving. The Monte-Carlo method. Test

Topic 4. Optimization

lect.7 "Optimization" (full-time course)

Optimization under constraints in the form of equations (Lagrange factors). Quadratic programming with inequalities.Kuhn-Tucker conditions. Danzig-Wolf method.

lab.w.11 "Lagrange factors" (full-time course)

Optimization under constraints in the form of equations (Lagrange factors).

lab.w.12 "Quadratic programming with inequalities." (full-time course)

Quadratic programming with inequalities.

lab.w.13 "Kuhn-Tucker conditions." (full-time course) Kuhn-Tucker conditions.

lab.w.14 "Danzig-Wolf method." (full-time course) Danzig-Wolf method.

Topic 5. Analysis of the main components

lect.8 "Analysis of the main components" (full-time course)

Analysis of the main components

lab.w.15 "Analysis of the main components" (full-time course)

Analysis of the main components

lab.w.16 "Application. Factor analysis." (full-time course)

Application. Factor analysis. Arbitrage pricing theory

7.2 Learning activities

LA1	Essay
LA2	Laboratory task

LA3	Abstract (Individual control task)
LA4	Tests

8. Teaching methods

Course involves learning through:

TM1	Lectures
TM2	Practical tasks
TM3	Discussions
TM4	Consultations

Survey and oral comments of the teacher on his results (TM1, 4), ongoing testing (TM2,3), assessment of completed practical tasks (TM2, 4)

Communication skills are formed through the preparation and defense of individual work. The ability to think logically and systematically is formed by writing a report to an individual task. Creativity forms problem-oriented learning and brainstorming.

9. Methods and criteria for assessment

9.1. Assessment criteria

ECTS	Definition	National scale Rating scale	
А	Outstanding performance without errors	5 (Excellent)	$90 \le RD \le 100$
В	Above the average standard but with minor errors	4 (Good)	$82 \le RD \le 89$
С	Generally sound work with some errors	4 (Good)	$74 \leq RD < 81$
D	Fair but with significant shortcomings	3 (Satisfactory)	$64 \le RD < 73$
Е	Performance meets the minimum criteria	3 (Satisfactory)	$60 \le RD \le 63$
FX	Fail – some more work required before the credit can be awarded	2 (Fail)	$35 \le \text{RD} < 59$
F	Fail – considerable further work is required	2 (Fail)	$0 \le \text{RD} < 34$

9.2 Formative assessment

FA1	Mini-tests
FA2	Protection of individual works
FA3	Interviews and oral comments of the teacher on his results

9.3 Summative assessment

SA1	Module control work
SA2	Laboratory work
SA3	Mini - tests

SA4	Exam
-----	------

Form of assessment:

8 semester		100 scores
SA1. Module control work		10
		10
SA2. Laboratory work		30
	5x6	30
SA3. Mini - tests		20
	5x4	20
SA4. Exam		40
		40

Form of assessment (special cases):

8 semester		100 scores
SA1. Module control work		20
		20
SA2. Laboratory work		15
	3x5	15
SA3. Mini - tests		25
	5x5	25
SA4. Exam		40
		40

Successful completion of the discipline is possible only if all tasks are completed by at least 60%

10. Learning resources

10.1 Material and technical support

MTS1	Computers, computer systems and networks
MTS2	Application software (MS Word, Excel, Statistica)

10.2 Information and methodical support

Essential Reading			
1	Watsham, Terry J., Quantitative Methods in Finance/Cengage Learning, 2016		
2	Hector Guerrero, Excel Data Analysis. Modeling and Simulation, Second Edition, Springer Nature Switzerland AG 2019 URL: https://doi.org/10.1007/978-3-030-01279-3		

3	Trinidad-Segovia, J.,E.& Miguel Sanchez-Granero(2021)Quantitative Methods for E conomics and Finance. – P:418. (PDF)https://doi.org/10.3390/books978-3-0365-0197-0	
4	Simone Cerreia-Vioglio, Massimo Marinacci, Elena Vigna (2021) Principles of Mathematics for Economics. Springer International Publishing, P 1505	
Supplemental Reading		
1	JM. Marin and C.P. Robert, Bayesian Essentials with R, Springer Texts in Statistics/ Springer Science+Business Media New York 2014	
Web-based and electronic resources		
1	Course BigData, URL: https://courses.prometheus.org.ua/courses/Prometheus/BigData101/2017_T1/abou t	
2	Course Mathematics for economists, URL: https://www.coursera.org/learn/mathematics-for-economists/	